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Light scattering from independent particles-nongaussian 
correction to the clipped intensity correlation function 

S H Chent, P Tartagliatl and P N Puseys 
tDepartment of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, 
Massachusetts 02139, USA 
§Royal Radar Establishment, Great Malvern, Worcs, UK 

MS received I O  August 1972, in revised form 17 October 1972 

Abstract. We consider Rayleigh scattering of laser light from an assembly of independent 
particles. We allow the particle number M within the scattering volume to fluctuate around 
a certain mean value (M). We derive a general formula for the intensity moments and find 
the nongaussian correction to the single-clipped-at-zero photocount correlation function to 
order l/(M)’. 

1. Introduction 

We consider a light-scattering experiment where there are N independent (non-inter- 
acting) particles contained in a container with volume V. A laser beam is focused into 
a small region of the medium resulting in a well-defined scattering volume U. For a 
homogeneous system, such as N brownian particles dispersed in a liquid medium, the 
average number of particles in the scattering volume is then 

U 
( M )  = N - - .  

V 

In the following calculation we shall eventually take the thermodynamic limit in which, 
N -+ x, u/V + 0 in such a way that ( M )  is a finite number. This limiting process is 
necessary for us to  be able to  neglect the unknown wall effect of the container and is also 
rather plausible in the practical experimental set-up where u/V can easily be made as 
small as lo-’. Depending on the concentration of the brownian particles, ( M )  can 
then be made to  range from less than unity to many hundreds. There is a class of experi- 
ments involving macromolecules in solution (Benedek 1968, Cummins and Swinney 
1969) or motile micro-organisms in suspension(Nossa1 et a1 1971, Nossal and Chen 1972) 
in which (M) is fairly large and the assumption of independent movements is still valid. 
We shall consider the Rayleigh scattering of laser light from these independently- 
moving particles. 

2. Calculation of nongaussian correction 

A powerful technique which can be used to  study slowly-varying time-dependent 
phenomena in liquids is intensity correlation spectroscopy (Jakeman and Pike 1969, 
$ Consiglio Nazionale Delle Richerche, Rome, Italy Postdoctoral Fellow. Permanent address : lstituto di 
Fisica, Facolta di Ingegneria, Universita di Roma, Rome, Italy. 

490 



Light scattering from independent particles 49 1 

Chen and Polonsky-Ostrowsky 1969). In this method of spectroscopy one essentially 
measures time-dependent statistical properties of fluctuations in the scattered-light 
intensity. One can write the scattered field amplitude generally as 

where A is the scattering amplitude of each particle in the scattering volume and q is the 
wavevector transfer of the scattering. (We have assumed the scattering volume to be 
uniformly illuminated by the laser beam.) Equation (2) can also be written (see Schaefer 
and Berne 1972), 

N 

E,@) = I bi(t) exp(iq . ri(t)) (3) 
i =  1 

with the random variable bi( t )  defined as 

if particle i is in U 

ifparticle i is not in u. {i bdt) = 

Inclusion of bi(t) in (3) conveniently allows us to sum over all particles N .  We can also 
write the instantaneous number of particles in U as 

N 

M ( t )  = 1 bi(t) (4) 
i =  1 

from which it follows 
N 

( M )  = (bi(t)> = N ( b ) *  ( 5 )  
i =  1 

By comparing (5) with (1) we identify ( b )  = u/V so that in the thermodynamic limit 
( b )  -+ 0. In a previous paper (Chen and Tartaglia 1972) we treated a special case of a 
fixed number of particles in the scattering volume. This limiting case can be obtained 
from the present treatment by letting ( b )  + 1 and N = (M) so that the fluctuation 
of the number of particles in the scattering volume can be neglected. 

It is easy to show (Chandrasekhar 1943, Appendix 3) that the random variable M 
is Poisson-distributed in the limit N + 00. If, for simplicity, one takes the fluctuation 
of M ( t )  to decay exponentially with a decay constant /?, then one can also derive the 
result 

where T = It2 - til. (In fact the decay will not, in general, be a simple exponential.) The 
intensity of scattered light is related to the scattered amplitude by Z( t )  = E:(t)E,(t) and 
therefore we can use expression (3) to calculate the first-order intensity correlation 
function 

N 

N 
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where the abbreviations I ( t , )  = I , ,  b,(t,) = bil, exp(iq . r i ( t l ) )  = A i ,  etc have been used. 
The factorization of averages in (7) follows from the fact that, under normal experimental 
conditions, the time scale of fluctuations of the b's is three to four orders of magnitude 
slower than that of the A's. Thus it is a very good approximation to treat the two types of 
variables as statistically independent. We can then evaluate the averages in (7) by noting 
that the only non-vanishing terms in the bracket containing A's are those with i = j, 
k = 1 (including i = J  = k = I )  and i = 1 # J  = k .  Thus denoting g,, = I(Ai*,Ai2)l = 
[4Aj,Aj*,)I and using the relation ( I )  = i 2 N ( b )  = i 2 ( M ) ,  we have 

1 
- -- { N ( N  - 1) ( b ) ,  + ( b ) )  + N ( N  - 1) ( b)2gf2} (8) 

( M > ,  

where we have used the fact that ( b , b 2 ) ,  is essentially ( b ) 2  in the time range where gf2 
has appreciable value. Expression (8) agrees with Schaefer and Berne's result if we 
take the thermodynamic limit discussed in the Introduction. On the other hand, if we 
take ( b )  = 1 and N = ( M ) ,  we obtain the result for a fixed number of particles (Chen 
and Tartaglia 1972, equation (5)). It is worth noting that the short time limit (Pz << 1) of 
the former result can be obtained simply by averaging the latter result over a Poisson 
distribution for the number of particles in the scattering volume. 

We can now extend the computational technique used above to obtain the higher 
order two-time intensity correlation functions. By actually writing it out in terms of 
b's and A's we find that we can generally write 

I k  E C,(k)(N['+'](b)'+' +IN['l(b)'h(e-P', ( b ) ) ) + f ( k ,  N ,  (b))g: ,  (9) 
( I l W  -- 

( I ) k + l  - ___ (M)"' 1 

where N['1 = N ( N -  1). . . ( N  - 1 + 1) and C,(k) is a coefficient defined as 

and the summation is over a set of ( a }  satisfying two conditions : 

a1+2Uz+ . . .  kak = k 

a1 +a,+ . . . ak = 1. (11) 

The coefficient ( k  ; a,, a,, . . . , ak)' is the number of ways of partitioning a set of k different 
objectsintoajsubsetscontainingjobjectsforJ = 1,2,. . . ,l,andistabulateduptok = 10 
in Abramowitz and Stegun (1965). f(k,  N ,  ( b ) )  is an unknown coefficient to  be deter- 
mined shortly. We have, as before, used the fact that we can neglect the slow time 
dependence of the b's whenever they multiply gf,. 

In the limit It2 - t , l  -+ CO, g 1 2  -, 0, h -, ( b )  we get 
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In this expression, if we further set (b) = 1, (M) = N we get the intensity moments 

(P) 1 (I)k=Nk+l 1 C,(k)(N['+ ' I +  IN[']) 
1=1 

which agrees with results obtained previously (Chen and Tartaglia 1972) for a fixed 
number of particles. To get the intensity moments for the case when (M) is variable 
we let N + 00 and ( b )  -, 0 in (12) to obtain 

From the intensity moments (14) we then determine the unknown factor f ( k ,  N, (b)) 
by setting t l  = t ,  in (9). In this case we have h = 1 so that 

Again we recover the result for a fixed number of particlesf(k, N, 1) (Chen and Tartaglia 
1972) by setting (b) = 1, (M) = N. However, for the present discussion we set 
( b )  = 0 and N -, cc which then gives 

k +  1 

I = 1  

where 
Dk+l(kf l )  = Ck+l(k+l)-Ck(k) = k!k 

D,(k+ 1) = C,(k+ l)-C~-1(k)-~CI(k), 

D,(k+ 1) = 0. 

1 = 2,3,. . .k (17) 

We can now compute the two-time intensity correlation function for the case when (M) 
is variable by substituting (16) into (9) and letting (b) + 0, N -, cc to obtain 

We can write out the expansion in (18) explicitly up to order l/(M),, 

Equations (14) and (18) are the basic results of the present paper. For their appli- 
cations we shall consider the photocount factorial moment and the clipped photocount 
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correlation function. The kth normalized factorial moment of the photocount is equal 
to the kth intensity moment (Mehta 1969) given by (14), that is, 

(n(n- 1). . . (n-  k +  1)) 

1 k  3 k  1 
= k ! [ l + l j k )  2 ! 2 ( M )  +{-( 3 ! 3  )+-(  4 4  )] (M>2 + . . .  +- 

The single-clipped-at-zero photocount correlation function and the average clipped 
photocount are given respectively by (Chen and Tartaglia 1972) 

which can be calculated explicitly up to  order 1/(M)’ for the present case by using (19) 
and (20), 

<n1nl0)> = 1, 1 e-pr (n)’ e-pr 
(n> (n‘O’> 1 + (n) (M) + (1 + ( ~ > 2  

We notice that in the expression for the photocount factorial moment (20), the first term 
gives the well known gaussian result (Mehta 1969) and therefore the nongaussian 
correction appears as powers in (M)-’. As for the clipped photocount correlation 
function (23), we observe the following three limiting cases : 

Equation (25) is an exact limit to be obeyed by any two-time correlation function. 
Equation (26) gives the same result as obtained by Schaefer and Berne (1972). Further- 
more (27) gives, as it must, the same result as obtained by Jakeman and Pike (1969) 
assuming from the start that the scattered field is a gaussian random process. It is 
possible to check experimentally expression (23) by first measuring (n“)) to obtain 
(M) and then using this value to check the nongaussian terms in (23) by varying (n). 
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3. Conclusions 

We have calculated correction terms to the single-clipped-at-zero photocount correlation 
function (for gaussian light), which arise due to the nongaussian nature of the scattered 
light when the mean number of particles in the scattering volume is not ‘essentially 
infinite’. When studying large scatterers (2 1 pm) with a focussed laser beam, these 
nongaussian terms can become appreciable. Thus, in view of the wide use of clipped 
correlation in intensity fluctuation spectroscopy, the calculation of their magnitude 
provided in this paper is of obvious interest. Two final points should be made. Firstly, 
throughout this paper we have assumed uniform illumination of the scattering volume 
and total spatial coherence of the scattered electric field over the photo-sensitive 
area of the detector. The effects of more realistic beam profiles and incomplete spatial 
coherence on equations (23) and (24) are extremely difficult to estimate, though such 
calculations have been performed for the first few photocount factorial moments 
(Schaefer and Pusey 1972). Secondly, it should be mentioned that, by using the method 
of scaled photocount correlation (Schaefer and Berne 1972, Jakeman et a1 1972), which, 
like clipping, has the experimental advantages of being a ‘one-bit’ technique, one can 
measure the true intensity correlation function (equation (8)), directly, thus avoiding the 
difficulties introduced by clipping. Scaling has the disadvantage, when compared to 
clipping, of requiring, in some instances, somewhat longer experimental run-times to 
achieve a given accuracy. 
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